金榜之路
学大陪你

高二数学知识点:三角函数-ag真人旗舰厅网址

来源:学大教育     时间:2016-01-27     

锐角三角函数定义

锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的锐角三角函数。

正弦(sin)等于对边比斜边;sina=a/c

余弦(cos)等于邻边比斜边;cosa=b/c

正切(tan)等于对边比邻边;tana=a/b

余切(cot)等于邻边比对边;cota=b/a

正割(sec)等于斜边比邻边;seca=c/b

余割(csc)等于斜边比对边。csca=c/a

互余角的三角函数间的关系

sin(90°-α)=cosα, cos(90°-α)=sinα,

tan(90°-α)=cotα, cot(90°-α)=tanα.

平方关系:

sin^2(α) cos^2(α)=1

tan^2(α) 1=sec^2(α)

cot^2(α) 1=csc^2(α)

积的关系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

锐角三角函数公式

两角和与差的三角函数:

sin(a b) = sinacosb cosasinb

sin(a-b) = sinacosb-cosasinb ?

cos(a b) = cosacosb-sinasinb

cos(a-b) = cosacosb sinasinb

tan(a b) = (tana tanb)/(1-tanatanb)

tan(a-b) = (tana-tanb)/(1 tanatanb)

cot(a b) = (cotacotb-1)/(cotb cota)

cot(a-b) = (cotacotb 1)/(cotb-cota)

三角和的三角函数:

sin(α β γ)=sinα·cosβ·cosγ cosα·sinβ·cosγ cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α β γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α β γ)=(tanα tanβ tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

辅助角公式:

asinα bcosα=(a^2 b^2)^(1/2)sin(α t),其中

sint=b/(a^2 b^2)^(1/2)

cost=a/(a^2 b^2)^(1/2)

tant=b/a

asinα bcosα=(a^2 b^2)^(1/2)cos(α-t),tant=a/b

倍角公式:

sin(2α)=2sinα·cosα=2/(tanα cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1 cosα)/2)

tan(α/2)=±√((1-cosα)/(1 cosα))=sinα/(1 cosα)=(1-cosα)/sinα

降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1 cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1 cos(2α))

万能公式:

sinα=2tan(α/2)/[1 tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1 tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

积化和差公式:

sinα·cosβ=(1/2)[sin(α β) sin(α-β)]

cosα·sinβ=(1/2)[sin(α β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α β) cos(α-β)]

sinα·sinβ=-(1/2)[cos(α β)-cos(α-β)]

和差化积公式:

sinα sinβ=2sin[(α β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α β)/2]sin[(α-β)/2]

cosα cosβ=2cos[(α β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α β)/2]sin[(α-β)/2]

推导公式:

tanα cotα=2/sin2α

tanα-cotα=-2cot2α

1 cos2α=2cos^2α

1-cos2α=2sin^2α

1 sinα=(sinα/2 cosα/2)^2

其他:

sinα sin(α 2π/n) sin(α 2π*2/n) sin(α 2π*3/n) …… sin[α 2π*(n-1)/n]=0

cosα cos(α 2π/n) cos(α 2π*2/n) cos(α 2π*3/n) …… cos[α 2π*(n-1)/n]=0 以及

sin^2(α) sin^2(α-2π/3) sin^2(α 2π/3)=3/2

tanatanbtan(a b) tana tanb-tan(a b)=0

函数名 正弦 余弦 正切 余切 正割 余割

在平面直角坐标系xoy中,从点o引出一条射线op,设旋转角为θ,设op=r,p点的坐标为(x,y)有

正弦函数 sinθ=y/r

余弦函数 cosθ=x/r

正切函数 tanθ=y/x

余切函数 cotθ=x/y

正割函数 secθ=r/x

余割函数 cscθ=r/y

正弦(sin):角α的对边比上斜边

余弦(cos):角α的邻边比上斜边

正切(tan):角α的对边比上邻边

余切(cot):角α的邻边比上对边

正割(sec):角α的斜边比上邻边

余割(csc):角α的斜边比上对边

三角函数万能公式

万能公式

(1)(sinα)^2 (cosα)^2=1

(2)1 (tanα)^2=(secα)^2

(3)1 (cotα)^2=(cscα)^2

证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

(4)对于任意非直角三角形,总有

tana tanb tanc=tanatanbtanc

证:

a b=π-c

tan(a b)=tan(π-c)

(tana tanb)/(1-tanatanb)=(tanπ-tanc)/(1 tanπtanc)

整理可得

tana tanb tanc=tanatanbtanc

得证

同样可以得证,当x y z=nπ(n∈z)时,该关系式也成立

由tana tanb tanc=tanatanbtanc可得出以下结论

(5)cotacotb cotacotc cotbcotc=1

(6)cot(a/2) cot(b/2) cot(c/2)=cot(a/2)cot(b/2)cot(c/2)

(7)(cosa)^2 (cosb)^2 (cosc)^2=1-2cosacosbcosc

(8)(sina)^2 (sinb)^2 (sinc)^2=2 2cosacosbcosc

万能公式为:

设tan(a/2)=t

sina=2t/(1 t^2) (a≠2kπ π,k∈z)

tana=2t/(1-t^2) (a≠2kπ π,k∈z)

cosa=(1-t^2)/(1 t^2) (a≠2kπ π,且a≠kπ (π/2) k∈z)

就是说sina.tana.cosa都可以用tan(a/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.

三角函数关系

倒数关系

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的关系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscαcα

平方关系

sin^2(α) cos^2(α)=1

1 tan^2(α)=sec^2(α)

1 cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

倒数关系

对角线上两个函数互为倒数;

商数关系

六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

平方关系

在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

sin(α β)=sinαcosβ cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ sinαsinβ

tan(α β)=(tanα tanβ )/(1-tanα ·tanβ)

tan(α-β)=(tanα-tanβ)/(1 tanα ·tanβ)

二倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/(1-tan^2(α))

tan(1/2*α)=(sin α)/(1 cos α)=(1-cos α)/sin α

半角的正弦、余弦和正切公式

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1 cosα)/2

tan^2(α/2)=(1-cosα)/(1 cosα)

tan(α/2)=(1—cosα)/sinα=sinα/1 cosα

万能公式

sinα=2tan(α/2)/(1 tan^2(α/2))

cosα=(1-tan^2(α/2))/(1 tan^2(α/2))

tanα=(2tan(α/2))/(1-tan^2(α/2))

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

诱导公式

诱导公式的本质

所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

常用的诱导公式

公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ α)=sinα k∈z

cos(2kπ α)=cosα k∈z

tan(2kπ α)=tanα k∈z

cot(2kπ α)=cotα k∈z

公式二: 设α为任意角,π α的三角函数值与α的三角函数值之间的关系:

sin(π α)=-sinα

cos(π α)=-cosα

tan(π α)=tanα

cot(π α)=cotα

领取学习报告 1对1个性化辅导试听课

  • 获取验证码

网站地图 | 全国免费咨询热线: | 咨询时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com

学大xueda.com ag真人试玩平台的版权所有

增值电信业务经营许可证京b2-20100091 电信与信息服务业务经营许可证京icp证100956

网站地图